APPROVED

North Miss. Utility Cc.

PO BOX 352 Hernando MS 38632 Phone: 662-429-9509 Pax: 662-429-6202

	_		
ŝ			
		\mathbf{M}	4
	0	12	
	*		

170000 170029 170029

Tou Mel	usa Par	lee	Proms	Worth	ns Ut	ilita
Page (062	- 576-	7822	Date			
	The state of the s	•	Pages			
Resident			CC:		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	· · · · · · · · · · · · · · · · · · ·
					**	T77
	-				·	
C Virgant C	For Review	C Massa Ga		☐ Manasa Reply		se Recycle
As	regue FCCR	sted Zai	J44	(Ope)	· · · · · · · · · · · · · · · · · · ·	

Additional Information for Lead

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. North Mississippi Utility Company is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead.

Water Quality Data Table - Brights (0170002)

Contambants	MEG	TT at		Allow-			n Typical Source
Inorganic Consumi	unine i					i Nacional	
Antimony (ppb)	6	6	0.0005	NA	2008	No	Discharge from petroleum refineries; fire retardants; ceramics; electronics; solder; test addition.
Arsenic (ppb)	0	10	0.0005	NA	2008	No	Erosion of natural deposits; Runoff from orchards; Runoff from glass and electronics production wastes
Barium (ppm)	2	2	0.018864	NA	2008	No	Discharge of drilling wastes; Discharge from metal refineries; Erosion of natural deposits
Beryllium (ppb)	4	4	0.0001	NA	2008	No	Discharge from metal refineries and coal-burning factories; Discharge from electrical, aerospace, and defense industries
Cadmium (ppb)	5	5	0.0001	NA	2008	No	Corrosion of galvanized pipes; Erosion of natural deposits; Discharge from metal refineries; runoff from waste batteries and paints
Chromium (ppb)	100	100	0.0005	NA	2008	No	Discharge from steel and pulp mills; Erosion of natural deposits
Cyanide [as Free Cn] (ppb)	200	200	0.005	NA	2008	No	Discharge from plastic and fertilizer factories; Discharge from steel/metal factories
Fluoride (ppm)	4	4	1.5	NA	2008	No	Erosion of natural deposits; Water additive which promotes strong teeth; Discharge from fertilizer and aluminum factories

6624296202

Mercury [Inorganic] (ppb)	2	2	0.0002	ΝA	2008	No	Erosion of natural deposits; Discharge from refineries and factories; Runoff from landfills; Runoff from cropland
Nitrate [measured as Nitrogen] (ppm)	10	10	0.41	NA	2008	No	Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits
Nitrite [measured as Nitrogen] (ppm)	1	1	0.02	NA	2008	No	Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits
Selenium (ppb)	50	50	0.0005	NA	2008	No	Discharge from petroleum and metal refineries; Erosion of natural deposits; Discharge from mines
Thallium (ppb)	0.5	2	0.0005	NA	2008	No	Discharge from electronics, glass, and Leaching from ore-processing sites; drug factories

Contaminants	MOLE					Europi AL	Typical Seurce
Inorpanic Contambiants	# 1 14.7						
Copper - action level at consumer taps (ppm)	1.3	1.3	1.3	2007	0	No	Corrosion of household plumbing systems; Erosion of natural deposits
Lead - action level at consumer taps (ppb)	0	15	0.002	2007	0	No	Corrosion of household plumbing systems; Erosion of natural deposits

Water Quality Data Table - Eudora (0170006)

MC 177.00 Contaminant NAMES AND SAME OF U.S. DES MARKON DANIES SOurce	

		Jaka Jaka		->-an-Ua	and the second second		
Disinfectants & Dist (There is convenions o						St of me	20 011 (c atamain ts)
Haloacetic Acids (HAA5) (ppb)	NA	60	6	NA	2008	No	By-product of drinking water chlorination
TTHMs [Total Trihalomethanes] (ppb)	NA	80	1.67	NA	2008	No	By-product of drinking water disinfection
Inorganic Contemin	uns"				# 1 E		
Antimony (ppb)	6	6	0.0005	NA	2008	No	Discharge from petroleum refineries; fire retardants; ceramics; electronics; solder; test addition.
Arsenic (ppb)	0	10	0.000246	NA	2008	No	Erosion of natural deposits; Runoff from orchards; Runoff from glass and electronics production wastes
Barium (ppm)	2	2	0.0072	NA	2008	No	Discharge of drilling wastes; Discharge from metal refineries; Erosion of natural deposits
Beryllium (ppb)	4	4	0.0001	NA	2008	No	Discharge from metal refineries and coal-burning factories; Discharge from electrical, aerospace, and defense industries
Cadmium (ppb)	5	5	0.0001	NA	2008	No	Corrosion of galvanized pipes; Erosion of natural deposits; Discharge from metal refineries; runoff from waste batteries and paints
Chromium (ppb)	100	100	0.0005	NA	2008	No	Discharge from steel and pulp mills; Erosion of natural deposits
Cyanide [as Free Cn] (ppb)	200	200	0.005	NA	2008	No	Discharge from plastic and fertilizer factories; Discharge from steel/metal factories
Fluoride (ppm)	4	4	1.31	NA	2008	No	Erosion of natural deposits; Water additive which promotes strong teeth; Discharge from fertilizer and aluminum factories
Mercury [Inorganic] (ppb)	2	2	0.0002	NA	2008	No	Erosion of natural deposits; Discharge from refineries and factories; Runoff from landfills; Runoff from cropland
Nitrate [measured as Nitrogen] (ppm)	10	10	80.0	NA	2008	No	Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits

Nitrite [measured as Nitrogen] (ppm)	1	1	0.02	NA	2008	No	Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits
Selenium (ppb)	50	50	0.0005	NA	2008	No	Discharge from petroleum and metal refineries; Erosion of natural deposits; Discharge from mines
Thallium (ppb)	0.5	2	0.0005	NA	2008	No	Discharge from electronics, glass, and Leaching from ore-processing sites; drug factories

Centaminants	NGE						Explical Source
			e sover				
Copper - action level at consumer taps (ppm)	1.3	1.3	0	2008	10	No	Corrosion of household plumbing systems; Erosion of natural deposits
Lead - action level at consumer taps (ppb)	0	15	0.001	2008	0	No	Corrosion of household plumbing systems; Erosion of natural deposits

Water Quality Data Table - Chickasaw Bluffs (0170028)

<u>Contaminabis</u>	MEMÆ				7		Typical Sogge
Disinfectants & Disin (There is convincing e			11.			d of m	Crotist costamigants.)
Haloacetic Acids (HAA5) (ppb)	NA	60	6	NA	2008	No	By-product of drinking water chlorination
TTHMs [Total	NA	80	1.67	NA	2008	No	By-product of drinking water

Trihalomethanes] (ppb)

disinfection

Controlinanta	1.703785					Territ 4	Ayptest Servee
Impressic Contambana		1					
Copper - action level at consumer taps (ppm)	1.3	1.3	0.1	2008	10	No	Corrosion of household plumbing systems; Erosion of natural deposits
Lead - action level at consumer taps (ppb)	0	15	0.006	2008	0	No	Corrosion of household plumbing systems; Erosion of natural deposits

Water Quality Data Table - Lake of the Hills (0170029)

Contandeants	MELG MEDIG	M. Tire Many			e Partie	/lorentee	Trepical Source
Disinfectants & Dista (There is convincing of Haloacetic Acids	110			NA	2008	Si of mi	cachial contaminants.) By-product of drinking water
(HAA5) (ppb) TTHMs [Total Trihalomethanes] (ppb)	NA	80	1.67	NA	2008	No	chlorination By-product of drinking water disinfection
Contaminants	MCEA	<u> </u>		Signal Control	9 September 1		Typical Source
Inerganic Contamine	ate (i.e.)) A	

Copper - action level at consumer taps (ppm)	1.3	1.3	0	2008	10	No	Corrosion of household plumbing systems; Erosion of natural deposits
Lead - action level at consumer taps (ppb)	0	15	0.001	2008	0	No	Corrosion of household plumbing systems; Erosion of natural deposits

Unit Descriptions	
<u>Term</u>	<u>Definition</u>
ppm	ppm: parts per million, or milligrams per liter (mg/L)
ррЬ	ppb: parts per billion, or micrograms per liter (μg/L)
NA	NA: not applicable
ND	ND: Not detected
NR	NR: Monitoring not required, but recommended.

Important Drivking Water De	Chaliforn
Term	<u>Definition</u>
MCLG	MCLG: Maximum Contaminant Level Goal: The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.
MCL	MCL: Maximum Contaminant Level: The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.
TT	TT: Treatment Technique: A required process intended to reduce the level of a contaminant in drinking water.
AL	AL: Action Level: The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.
Variances and Exemptions	Variances and Exemptions: State or EPA permission not to meet an MCL or a treatment technique under certain conditions.
MRDLG	MRDLG: Maximum residual disinfection level goal. The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.
MRDL	MRDL: Maximum residual disinfectant level. The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.
MNR	MNR: Monitored Not Regulated
MPL	MPL: State Assigned Maximum Permissible Level

Bill J Roberson

P O Box 362

Hernando, MS 38632

662-429-9509

662-429-6202

2008 Drinking Water Quality Report

Is my water safe?

Last year, we conducted tests for over 80 contaminants. We only detected 4 of those contaminants, and found only 1 at a level higher than the EPA allows. As we told you at the time, our water temporarily exceeded drinking water standards. (For more information see the section labeled Violations at the end of the report.) This report is a snapshot of last year's water quality. Included are details about where your water comes from, what it contains, and how it compares to standards set by regulatory agencies. We are committed to providing you with information because informed customers are our best allies.

Do I need to take special precautions?

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Water Drinking Hotline (800-426-4791).

Where does my water come from?

Our water comes from 2 deep wells located in the Upper Meridian Aquifer.

Source water assessment and its availability

Our source water assessment has been completed. Our wells were ranked " low" in terms of susceptibility to contamination. For a copy of the report, please contact our office at 601.576,7518.

Why are there contaminants in my drinking water?

170002 need MSDH Message re: Flodialogical Gampling
170026 Chlorine Residual (MRDL) Running Annual Average

MRDL Violation

My Fax number 601 576-7800

BUREAU OF PUBLIC WATER SUPPLY

CALENDAR YEAR 2008 CONSUMER CONFIDENCE REPORT CERTIFICATION FORM

	NORTH MISSISSIPPI UTILITY COMPANY INC Public Water Supply Name
AKE O	DF HILLS(0170029) BRIGHTS (0170002) EUDORA (0170006) CHICKASAW BLUFFS (0170028) List PWS ID #s for all Water Systems Covered by this CCR
confid	Sederal Safe Drinking Water Act requires each <i>community</i> public water system to develop and distribute a consumer lence report (CCR) to its customers each year. Depending on the population served by the public water system, this CCF are mailed to the customers, published in a newspaper of local circulation, or provided to the customers upon request.
Please	Answer the Following Questions Regarding the Consumer Confidence Report
	Customers were informed of availability of CCR by: (Attach copy of publication, water bill or other)
	Advertisement in local paper On water bills Other
	Date customers were informed:/
	CCR was distributed by mail or other direct delivery. Specify other direct delivery methods:
	Date Mailed/Distributed: / /
<u>-X</u>	CCR was published in local newspaper. (Attach copy of published CCR or proof of publication)
	Name of Newspaper: DESOTO TIMES-TRIBUNE
	Date Published: _06/30/09
1	CCR was posted in public places. (Attach list of locations)
	Date Posted: / /
	CCR was posted on a publicly accessible internet site at the address: www
CERT	CIFICATION
the for consist	by certify that a consumer confidence report (CCR) has been distributed to the customers of this public water system in and manner identified above. I further certify that the information included in this CCR is true and correct and is tent with the water quality monitoring data provided to the public water system officials by the Mississippi State truent of Health, Bureau of Public Water Supply.
Nama	Cl Aober————————————————————————————————————
1 varne/	Mail Completed Form to: Bureau of Public Water Supply/P.O. Box 1700/Jackson, MS 39215 Phone: 601-576-7518

2008 Drinking Water Quality Report North Mississippi Utility Company Brights (0170002) Eudora (0170006) Chickasaw Bluffs (0170028) Lake of the Hills (0170029)

my water safe?

Last year, as in years past, your tap water met all U.S. Environmental Protection Agency (EPA) and state drinking water health standards. Local Water vigilantly safe-guards its water supplies and once again we are proud to report that our system has not violated a maximum contaminant level or any other water quality standard. Do I need to take special precautions?

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIVAIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Water Drinking Hotline (800-426-4791).

Where does my water come from?

Our water comes from three wells from the Sparta Sand Aquifer Source water assessment and its availability

Currently, our source water assessment is being prepared by the Mississippi State Department of Health. When it is completed you will be notified and copies of this assessment will be made available upon request.

Why are there contaminants in my drinking water?

limits for contaminants in bottled water which must provide the same protection for public health. by public water systems. Food and Drug Administration (FDA) regulations establish scribes regulations that limit the amount of certain contaminants in water provided and mining activities. In order to ensure that tap water is safe to drink, EPA prenants, which can be naturally occurring or be the result of oil and gas production stations, urban stormwater runoff, and septic systems; and radioactive contamiucts of industrial processes and petroleum production, and can also come from gas taminants, including synthetic and volatile organic chemicals, which are by-prodcides and herbicides, which may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses; organic Chemical Conmestic wastewater discharges, oil and gas production, mining, or farming; pestican be naturally occurring or result from urban stormwater runoff, industrial, or dooperations; and wildlife; inorganic contaminants, such as salts and metals, which that may come from sewage treatment plants, septic systems, agricultural livestock mals or from human activity. microbial contaminants, such as viruses and bacteria radioactive material, and can pick up substances resulting from the presence of anior through the ground, it dissolves naturally occurring minerals and; in some cases ponds, reservoirs, springs, and wells. As water travels over the surface of the land drinking water (both tap water and bottled water) include rivers, lakes, streams, tection Agency's (EPA) Safe Drinking Water Hotline (800-426-4791). The sources of nants and potential health effects can be obtained by calling the Environmental Pronecessarily indicate that water poses a health risk. More information about contamileast small amounts of some contaminants. The presence of contaminants does not Drinking water, including bottled water, may reasonably be expected to contain at

How can I get involved?

We want our valued customers to be informed about their water utility. If you would like a copy of the Consumer Confidence Report for your area, please come by our office at 1481 Byhalia Rd. Our office hours are 8 AM to Noon and 1 Pm to 4:30 PM Monday through Friday.

In accordance with the Radionuclides Rule, all community public water supplies were frequired to sample quarterly for radionuclides beginning January 2007 - December 2007. Your public water supply completed sampling by the scheduled deadline; however, during an audit of the Mississippi State Department of Health Radiological Health Laboratory, the Environmental Protection Agency (EPA) suspended analyses and reporting of radiological compliance samples and results until further notice.

Although this was not the result of inaction by the public water supply, MSDH was required to issue a violation. The Bureau of Public Water Supply is taking action to resolve this issue as quickly as possible. If you have any questions, please contact Melissa Parker, Deputy Director, Bureau of Public Water Supply, at 601-576-7518.

Additional Information for Lead

If present, elevated levels of lead can cause serious health problems, especially for present women and young children. Lead in drinking water is primarily from materals and components associated with service lines and home plumbing. North Missossipi Utility Company is responsible for providing high quality drinking water, but water has been sitting for several hours, you can minimize the potential for lead exdrinking your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead.

Water Quality Data Table – Brights (0170002)

electronics preduction wastes Discharge of drilling wastes; Discharge from model actions.	8	2008	=	0.018864 NA		Barium (ppm) 2 2
electronics; solder; test addition. Presion of natural deposits; Autoff from auchomic Demosi	8	2008	3	TM 5000.0	=	Arsenic (ppb) 0
Discharge from petroleum re	8	2008 No	E	1.005	•	Antimony (ppb) 6
Matalia Nyiza Surez	ı	Kange Sample Low High-	Kange San Low High-			Contaminants May Contaminants

Copper - action level at consumer laps (ppm) 1.3 1.3 1.3 1.3 Lead - action level at consumer laps (ppm) 1.5 0.00 Lead - action level at consumer laps (pph) 0 15 0.00	Thaillian (pgb) ((ppb) 2 (ppb) 2 Nitrate [measured as Nitrogen] (ppm) 10	Gyanide [as Free Gil] (pph) 200 (puh) 4 Fluoride (pum) 4	Beryllium (ppb) 4 Cashnium (ppb) 5 Carronnium (ppb) 100
Mants Vel at con 1.3 1 lat consum 0 1	WELL A				
usumer 1 1,5 15				8	.
135 (0.002	Your Water		0.000Z 0.41	15 105	0.0001 0.0001
2007 2007	Sample Sample		3 3	2 2	
	ZOUR NO B	2008	2008 2008	2108 2108	20 20 20 20 20 20 20 20 20 20 20 20 20 2
8 8	g 25 CCC - 18			2 2	8 8 8
Carresion of bossehold plumbing systems; Fusion of natural deposits Curresion of bossehold plumbing systems; Eucolon of addural deposit	inscitatige from new processing sites; dent Lacching from new processing sites; drug lactories ets if prical Source Al. Typical Source	Nanoff from fertilizer use; Leaching from segric tasks, sewage; Fresion of ratural deposits Discharge from petroleum and metal re- fineries; Evosion of natural deposits; Dis- charge from mines	Evesion of natural deposits; Discharge from refineries and lactories; Bunoff from landfils; Bunoff from crupland Bunoff from fertilizer use; Leaching from septic tanks, severage; Evesion of natural deposits	ston of natural deposits Bischarge from plastic and terdifizer fac unves; Bischarge from steal metal factories frusion of natural deposits; Water addi thre which promotes strong teeth; Dis charge from ferdifizer and aluminum factories	Sischarge from metal refineries and coal-burning factories; Discharge from electrical, aerospace, and de fense industries Correstion of galvanized pipes; Evosion of inatural deposits; Discharge from metal refineries; runoff from waste bafteries and paints Discharge from steel and pulp mills; Fro

Water Quality Data Table – Eudora (0170006)

per year because the concentrations of these contaminants do not change fredata presented in this table is from testing done in the calendar year of the report. The EPA or the State requires us to monitor for certain contaminants less than once The table below lists all of the drinking water contaminants that we detected during the calendar year of this report. The presence of contaminants in the water does not necessarily indicate that the water poses a health risk. Unless otherwise noted, the

			3			
natural deposits				gjes)	₩ ₩	Nitrite [measured as Nitrogen]
from refineries and factories; Roant from landfills; Runoff from crepland Runoff from terdlizer use; Leaching	æ 2	2008	E		1 as M	Nitrate (measured as Nitrogen) (ppm) 10 10
ative which promotes strong teeth; Discharge from fertilizer and aluminum factories Fresion of natural deposits; Discharge	8 5	21	0.0002 NA	2	2 是	Mercury [inorganic] (ppb) 2
factories; Discharge from steel/metal factories Frosion of natural deposits; Water ad	3	2008		4	•	Fluoride (ppm)
Erosion of natural deposits Discharge from plastic and fertilizer	7	2008	M 500	28	22	Cyanide (as Free Co) (ppb) 200
of natural deposits; Discharge from metal refineries; runoff from wasto batteries and paints Discharge from steed and pulp milts;	3	2008	C.0005 NA	Ħ	Ħ	Chronium (ppb) 100
coal-burning factories; Discharge from electrical, aerospace, and defense in disciries Corression of galvanized pipes; Fresion	2	2008	0.000 M	en .	en	Cadmium (ppb)
charge from metal refineries; Erosion of natural deposits Discharge from metal refineries and	8 8	200	M.1000	•	•	Beryllian (pph)
from orcharts; funoff from glass and electronics production wastes Discharge of drilling wastes; Dis	2 2	2008	3.0072 M	2	№	Barium (ppm)
fire retardants; ceremits; electronics; solder; test addition. Erosion of natural deposits; Hunoff	2 2	2008	0.00024 NA	=	-	Arsenic (pph)
water disinfection Discharge from petroleum refineries;	2008 No	22	0.000.W		animants 6	Inorganic Contaminants Antimony (pph) 6
water chlorization By-product of drinking	2008 No	22	167 M			TTHM's [Total Tribalomethanes] (pp#) NA 80
3	l is necess 2008 No	infectant is 21	addition of a disc	dence lla	ICING EN S (HAAS)	(i liere is convincing evi Haloacetic Acids (NAA5) (ppb) NA
Violation Typical Source	Date Vio		Your Range Water Low Iducts	NGLG MCL, or II, or Mrolg Mrol Sintection By-Pr	MCLG OF MRDLL Disinfect	MCLG MCL, or IT, or Your Contaminants MRDLG MRDL Wate Disinfectants & Disinfection By Products

Water Quality Data Table - Chickasaw Bluffs (0170028)

data presented in this table is from testing done in the calendar year of the report.

The EPA or the State requires us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not change fre-The table below lists all of the drinking water contaminants that we detected during the calendar year of this report. The presence of contaminants in the water does not quently. necessarily indicate that the water poses a health risk. Unless otherwise noted, the

	1	Lead - a	1	Copper	ingga	1		Haloac		Contra		
	8	Lead - action level at consumer taps		Copper - action level at consumer taps	Inorganic Contaminants		(ppb) NA 60 TTHMs [Total Tribalomethanes]	Raioacetic Acids (HAA5)	Distriction by Products	linants.		
	-		=	evel at		M 88			Jisimec	3	=	ā
	ēń		E	Consume		=					=======================================	
	1.006	7	1.0	Safet		1.67	8			Water	Ĭ	
	2008		2008			Z	3				Hang	
	0 15 0.006 2008 O No Correction of household plantiling systems; Fresion of		(upun) 1.3 1.3 8.1 2008 10 No Composion of household planning systems; Fossion of			2	2	(under as convicting expedite that addition of a disinfectant is necessary for control of microbial contaminants.) Rabacetic Acids (1845)		Contaminants. MEDLS WARDL Water Low High Date Violation Typical Source		
	e Corr	Ī				2008 No	2008 No	See S				
natural deposits	osion oi	naum'ai inclination				By-p	B-	sary to		ation Ty		
88	i househ	8	f househ			reduct o	Poduct o			pical See		
	nid pianal					1				2	õ	
	ing syst		aling syst			g water						
	ens; Evo		iems; tre			By-product of drinking water disintection	By-product of dripking water chlorisation					
	Sign of		Sign of			E	₹.	₽.				

natural deposits

Water Quality Data Table – Lake of the Hills (0170029)

The table below lists all of the drinking water contaminants that we detected during the calendar year of this report. The presence of contaminants in the water does not necessarily indicate that the water poses a health risk. Unless otherwise noted, the data presented in this table is from testing done in the calendar year of the report. The EPA or the State requires us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not change frequently.

MCLG MCL, or TT, or Your Range Sample MRDLG MRDL Water Low High Date Violation **Typical Source** Disinfectants & Disinfection By-Products (There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.) Haloacetic Acids (HAA5)(ppb) NA 2008 No By-product of drinking water chlorination TTHMs [Total Trihalomethanes] 80 1.87 NA 2008 No By-product of drinking water disinfection Inorpanic Contaminants Copper - action level at consumer taps (ppm) 1.3 1.3 2008 10 Corresion of household plumbing systems; Ero sion of natural deposits Lead - action level at consumer taps (pab) 15 0.001 7008 N Corrosion of household plumbing systems; Erosion of natural deposit **Unit Descriptions** Term ppm ppm: parts per million, or milligrams per liter (mg/L) ppb: parts per billion, or micrograms per liter (µg/L) pob NA NA: not applicable ND ND: Not detected NR NR: Monitoring not required, but recommended. Important Drinking Water Definitions Definition Term MCLG MCLS: Maximum Contaminant Level Goal: The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety. MGL: Maximum Contaminant Level: The highest level of a contaminant that is allowed in drinking MCL water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology. Π TT: Treatment Technique: A required process intended to reduce the level of a contaminant in drinking water: AL. AL: Action Level: The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow. Variances and

For more information please contact: Bill J Roberson, P O Box 362, Hernando, MS 38632, 662-429-9509, 662-429-6202

Variances and Exemptions: State or EPA permission not to meet an MCL or a treatment technique

MRDLE: Maximum residual disinfection level goal. The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of

MRDL: Maximum residual disinfectant level. The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of micro

Exemptions

MRDLG

MRDL

MNR

MPI

under certain conditions.

bial contaminants.

MNR: Monitored Not Regulated

disinfectants to control microbial contaminants.

MPL: State Assigned Maximum Permissible Level

PROOF OF PUBLICATION

THE STATE OF MISSISSIPPI COUNTY OF DESOTO

Diane Smith personally appeared before me the undersigned in and for said County and State and states on oath that she is the **CLERK** of the DeSoto Times-Tribune, a newspaper published in the town of Hernando, State and County aforesaid, and having a general circulation in said county, and that the publication of the notice, a copy of which is hereto attached, has been made in said paper ____/_ consecutive times, as follows, to-wit:

Volume No on the	30 day of 4	, 2009	
Volume No on the	day of	, 2009	
Volume No on the	day of	, 2009	
Volume No on the	day of	, 2009	
Volume No on the	day of	, 2009	
Volume No on the	day of	, 2009	
Diane Sm	th		
Sworn to and subscribed before me, t	his <u>30</u> day of <u> </u>	June, 2008)
BY Judy N. (b	uogo "	و د د د د د د د د د د د د د د د د د د د	OF MISS/SIGNAL OF MIS
NOTARY PUBLIC STATE OF MISSISS MY COMMISSION EXPIRES: JANUA BONDED THRU DIXIE NOTARY SER	RY 16, 2013	99999999	ID No 61798 NOTARY PUBLIC Comm Expires January 16, 2013
A. Single first insertion of	6.48 words @ .12\$ 678	3.92	\$3070 COUNTY
B subsequent insertions of	words @	10 \$	小工用 自然 经收益 原 4 元。
C. Making proof of publication and deposing	g to same \$	3.00	
TOTAL PUBLISHER'S FEE: \$	76.92		

2008 Drinking Water Quality Report North Mississippi Utility Company

Brights (0170002) Eudora (0170006) Chickasaw Bluffs (0170028) Lake of the Hills (0170029)

Is my water safe?

Last year, as in years past, your tap water met all U.S. Environmental Protection Agency (EPA) and state drinking water health standards. Local Water vigilantly safeguards its water supplies and once again we are proud to report that our system has not violated a maximum contaminant level or any other water quality standard.

Do I need to take special precautions?

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Water Drinking Hotline (800-426-4791).

Where does my water come from?

Our water comes from three wells from the Sparta Sand Aquifer for Brights, two wells from Sparta Sand Aquifer and one well from Lower Wilcox Aquifer for Eudora, two wells from Sparta Sand Aquifer for Chickasaw Bluffs and two wells from the Sparta Sand Aquifer for Lake of the Hills.

Source water assessment and its availability

Currently, our source water assessment is being prepared by the Mississippi State Department of Health. When it is completed you will be notified and copies of this assessment will be made available upon request.

Why are there contaminants in my drinking water?

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's (EPA) Safe Drinking Water Hotline (800-426-4791). The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity: microbial contaminants, such as viruses and bacteria, that may

come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife; inorganic contaminants, such as salts and metals, which can be naturally occurring or result from urban stormwater runoff, industrial, or domestic wastewater discharges, oil and gas production, mining, or farming; pesticides and herbicides, which may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses; organic Chemical Contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, and septic systems; and radioactive contaminants, which can be naturally occurring or be the result of oil and gas production and mining activities. In order to ensure that tap water is safe to drink, EPA prescribes regulations that limit the amount of certain contaminants in water provided by public water systems. Food and Drug Administration (FDA) regulations establish limits for contaminants in bottled water which must provide the same protection for public health.

How can I get involved?

We want our valued customers to be informed about their water utility. If you would like a copy of the Consumer Confidence Report for your area, please come by our office at 1481 Byhalia Rd. Our office hours are 8 AM to Noon and 1 Pm to 4:30 PM Monday through Friday.

Monitoring and reporting of compliance data violations

We are required to monitor your drinking water for specific constituents on a monthly basis. Results of regular monitoring are an indicator of whether or not our drinking water meets health standards. Beginning January 1, 2004, the Mississippi State Department of Health (MSDH) required public water systems that use chlorine as a primary disinfectant to monitor/test for chlorine residuals as required by the Stage 1 Disinfection By-Products Rule. Our system (0170006) failed to complete these monitoring requirements in April 2005. We did complete the monitoring requirements for bacteriological sampling that showed no coliform present. In an effort to ensure systems complete all monitoring requirements, MSDH now notifies systems of missing samples prior to the end of the compliance period.

Other Information

In accordance with the Radionuclides Rule, all community public water supplies were required to sample quarterly for radionuclides beginning January 2007 - December 2007. Your public water supply completed sampling by the scheduled deadline; however, during an audit of the Mississippi State Department of Health Radiological Health Laboratory, the Environmental Protection Agency (EPA) suspended analyses and reporting of radiological compliance samples and results until further notice.

Although this was not the result of inaction by the public water supply, MSDH was required to issue a violation. The Bureau of Public Water Supply is taking action to resolve this issue as quickly as possible. If you have any questions, please contact Melissa Parker, Deputy Director, Bureau of Public Water Supply, at 601-576-7518.

Additional Information for Lead

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. North Mississippi Utility Company is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water

has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead.

Water Quality Data Table - Brights (0170002)

The table below lists all of the drinking water contaminants that we detected during the calendar year of this report. The presence of contaminants in the water does not necessarily indicate that the water poses a health risk. Unless otherwise noted, the data presented in this table is from testing done in the calendar year of the report. The EPA or the State requires us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not change frequently.

1966 - XIII TO BEEF 1986 - 128 200 -	PARK I VARISARY 1885	Sales Sales and John St.	der inder ka nners ander van	efaulment au	WARTER BASE PAR IN		
	VICE.	MC					
Contaminants	MERRIE		ore Kour				
			907 Jan 300		211-1-1	73 <u>, 101, 151</u>	ous Akupical Source
Disinfectants & Bising	A						
(Phere is convencing e	vidence il	pat additi				100000	or or a conjumpments
Chlorine (as Cl2) (ppm)	4	4	1.53	1.12	1.93 2008	No	Water additive used to control microbes
			SI AND THE WAR HOUSE WAS	第2章章的建设 ,1447年最高。	MANAGEMENTS - DD. (3. Nachoner co.)	TO STALL HERY LIST VILLENING NATION	
Inorganic Cantampan	is.						
Antimony (ppb)	6	6	0.0005	NA	2008	No	Discharge from petroleum refineries; fire retardants; ceramics;
							electronics; solder; test addition.
Arsenic (ppb)	0	10	0.0005	NA	2008	No	Erosion of natural deposits; Runoff from orchards; Runoff from glass
•							and electronics production wastes
Barium (ppm)	2	2	0.018864	NA	,2008	No	Discharge of drilling wastes;
							Discharge from metal refineries; Erosion of natural deposits
Beryllium (ppb)	4	4	0.0001	NA	2008	No	Discharge from metal refineries and

Discharge from metal refineries and coal-burning factories; Discharge from electrical, aerospace, and

defense industries

Cadmium (ppb)	5	5	0.0001	NA	2008	No	Corrosion of galvanized pipes; Erosion of natural deposits; Discharge from metal refineries; runoff from waste batteries and paints
Chromium (ppb)	100	100	0.0005	NA	2008	No	Discharge from steel and pulp mills; Erosion of natural deposits
Cyanide [as Free Cn] (ppb)	200	200	0.005	NA	2008	No	Discharge from plastic and fertilizer factories; Discharge from steel/metal factories
Fluoride (ppm)	4	4	1.5	NA	2008	No	Erosion of natural deposits; Water additive which promotes strong teeth; Discharge from fertilizer and aluminum factories
Mercury [Inorganic] (ppb)	2	2	0.0002	NA	2008	No	Erosion of natural deposits; Discharge from refineries and factories; Runoff from landfills; Runoff from cropland
Nitrate [measured as Nitrogen] (ppm)	10	10	0.41	NA	2008	No	Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits
Nitrite [measured as Nitrogen] (ppm)	1	1	0.02	NA	2008	No	Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits
Selenium (ppb)	50	50	0.0005	NA	2008	No	Discharge from petroleum and metal refineries; Erosion of natural deposits; Discharge from mines
Thallium (ppb)	0.5	2	0.0005	NA	2008	No	Discharge from electronics, glass, and Leaching from ore-processing sites; drug factories

Contaminants	MONG.	<u> </u>	XV svet	galli k Bodi		ARVCCOOK	Avplica#Searce
Inorganic Confernicants							
Copper - action level at consumer taps (ppm)	1.3	1.3	1.3	2007	0	No	Corrosion of household plumbing systems; Erosion of natural deposits
Lead - action level at consumer taps (ppb)	0	15	0.002	2007	0	No	Corrosion of household plumbing systems; Erosion of natural deposits

Water Quality Data Table - Eudora (0170006)

	MELG	VICE.						
Contaminants	or MRDEG	FT.or MERDE	Your Lewster		pressor	Sample: Date	Wiolesion	Expect Sources
Disinfectants & Disi		Section 1						
(There is convincing		t addition		ctant is	Hacesan	e for com	e Constant	rpprai/contamental).
Chlorine (as Cl2) (ppm)	4	4	1.33	1.25	1.35	2008	No	Water additive used to control microbes
Haloacetic Acids (HAA5) (ppb)	NA	60	6	NA		2008	No	By-product of drinking water chlorination
TTHMs [Total Trihalomethanes] (ppb)	NA .	80	1.67	NA		2008	No	By-product of drinking water disinfection
Inorganie Contamin	SPECIAL SPECIA							
Antimony (ppb)	6	6	0.0005	NA		2008	No	Discharge from petroleum refineries; fire retardants; ceramics; electronics; solder; test addition.
Arsenic (ppb)	0	10	0.000246	NA		2008	No	Erosion of natural deposits; Runoff from orchards; Runoff from glass and electronics production wastes
Barium (ppm)	2	2	0.0072	NA		2008	No	Discharge of drilling wastes; Discharge from metal refineries; Erosion of natural deposits
Beryllium (ppb)	4	4	0.0001	NA		2008	No	Discharge from metal refineries and coal-burning factories; Discharge from electrical, aerospace, and defense industries
Cadmium (ppb)	5	5	0.0001	NA.		2008	No	Corrosion of galvanized pipes; Erosion of natural deposits; Discharge from metal refineries; runoff from waste batteries and

							•
							paints
Chromium (ppb)	100	100	0.0005	ÑΑ	2008	No	Discharge from steel and pulp mills; Erosion of natural deposits
Cyanide [as Free Cn] (ppb)	200	200	0.005	`NA	2008	No	Discharge from plastic and fertilizer factories; Discharge from steel/metal factories
Fluoride (ppm)	4	4	1.31	NA	2008	No	Erosion of natural deposits; Water additive which promotes strong teeth; Discharge from fertilizer and aluminum factories
Mercury [Inorganic] (ppb)	2	2	0.0002	NA	2008	No	Erosion of natural deposits; Discharge from refineries and factories; Runoff from landfills; Runoff from cropland
Nitrate [measured as Nitrogen] (ppm)	10	10	0.08	NA	2008	No	Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits
Nitrite [measured as Nitrogen] (ppm)	1	1	0.02	NA	2008	No	Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits
Selenium (ppb)	50	50	0.0005	NA	2008	No	Discharge from petroleum and metal refineries; Erosion of natural deposits; Discharge from mines
Thallium (ppb)	0.5	2 .	0.0005	NA	2008	No	Discharge from electronics, glass, and Leaching from ore-processing sites; drug factories
Contaminants .	MCL					E/fi	G F voical Soninger 2

Contaminants (MCEC						FypicaRSource
Enograpie Contaminants							
Copper - action level at consumer taps (ppm)	1.3	1.3	0	2008	10	No	Corrosion of household plumbing systems; Erosion of natural deposits
Lead - action level at consumer taps (ppb)	0	15	0.001	2008	0	No	Corrosion of household plumbing systems; Erosion of natural deposits

Water Quality Data Table - Chickasaw Bluffs (0170028)

Contamitants	MKLG par MRDEG	TT, or	Your	a Kang	S. Stante Belo D.A.	dio Meso	** Evpical#Softces
Dismicertants & Dism (There is convincing e		A			recolate del colti	roller in	Econial contamentaries &
Haloacetic Acids (HAA5) (ppb)	NA	60	6	NA	2008	No	By-product of drinking water chlorination
TTHMs [Total Trihalomethanes] (ppb)	NA	80	1.67	NA	2008	No	By-product of drinking water disinfection
	Similar Company						

<u> </u>	ontambants M	Cle	<u> 2117</u>	Yours Water	Cambridge District	Scotter de la constant de la constan		Eypfeak Squree
Î	потувые Соптаціпація	7 i 14 12 i 15 i						
	Copper - action level at onsumer taps (ppm)	1.3	1.3	0.1	2008	10		Corrosion of household plumbing systems; Erosion of natural deposits
•	ead - action level at onsumer taps (ppb)	0	15	0.006	2008	0	No	Corrosion of household plumbing systems; Erosion of natural deposits

Water Quality Data Table – Lake of the Hills (0170029)

Contaminants Disinfectants & Disin (There is convincing to	And Sales	TI, or MRDE Products	Water		High Date	Violetion	Expical Source
Haloacetic Acids (HAA5) (ppb)	NA	. 60	6	NA	2008	No	By-product of drinking water chlorination
TTHMs [Total Trihalomethanes] (ppb)	NA	80	1.67	NA	2008 .	No	By-product of drinking water disinfection

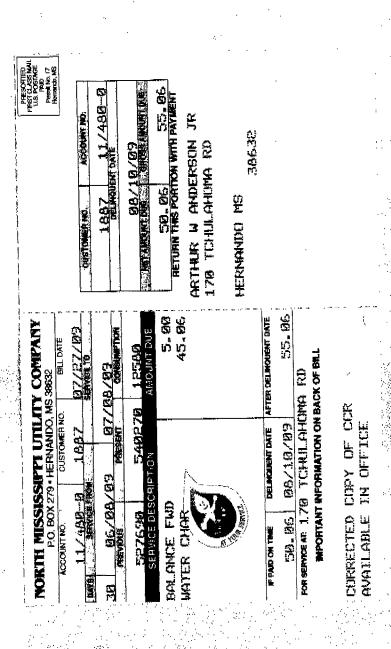
Contaminants Inorganic Contaminants	MCLG	<u> 21</u>	Your Water	Sample Date	# Samples. <u>Exceecising Af-</u>	Exceeds AF	Eypteal Senuce
Copper - action level at consumer taps (ppm)	1.3	1.3	0	2008	10	No	Corrosion of household plumbing systems; Erosion of natural deposits
Lead - action level at consumer taps (ppb)	0	15	0.001	2008	0	No	Corrosion of household plumbing systems; Erosion of natural deposits

Unit Descriptions						
Term	<u>Definition</u>					
ppm	ppm: parts per million, or milligrams per liter (mg/L)					
ppb	ppb: parts per billion, or micrograms per liter (μg/L)					
NA	NA: not applicable					
ND	ND: Not detected					

h. vva	
INK	NR: Monitoring not required, but recommended.

Important Drinking Water Definitions							
<u>Term</u>	<u>Definition</u>						
MCLG	MCLG: Maximum Contaminant Level Goal: The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.						
MCL	MCL: Maximum Contaminant Level: The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.						
TT	TT: Treatment Technique: A required process intended to reduce the level of a contaminant in drinking water.						
AL	AL: Action Level: The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.						
Variances and Exemptions	Variances and Exemptions: State or EPA permission not to meet an MCL or a treatment technique under certain conditions.						
MRDLG	MRDLG: Maximum residual disinfection level goal. The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.						
MRDL	MRDL: Maximum residual disinfectant level. The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.						
MNR	MNR: Monitored Not Regulated						
MPL	MPL: State Assigned Maximum Permissible Level						

For more information please contact:


Bill J Roberson

P O Box 362

Hernando, MS 38632

662-429-9509

662-429-6202

North Wiss. Utility Co.

PO BOX J62 Hernando MS 38652 Chone: 562-429-9609 Fac 662-429-6202

Fax

To: JUSSIC	From Polarn Pressley
+001-576-7800	7-28-09
	Pagea:
Rec	cc.
□ Urgent □ Por Review □ Person ©	
Corrected copy	of CCR and
Notification of	availability
on 61115.	J
I will be mai	ling hard copy.

2008 CCR Contact Information

Date:	7/8/09	Time: 0:44	
PWSID: 476	4002, 170c	206, 17 0028	
System Name:	V Ms Util	ity	
		,	
Lead/Copp	er Language	MSDH Message re: Radiologi	g-mapping.
170006 ME	RDL Violation	Chlorine Residual (MRD	17000 G
Othe	r Violation(s)		
Will correct report	& mail copy marked "co	rrected copy" to MSDH.	
Will notify custome	ers of availability of corre	ected report on next monthly bill	•
Spoke with (Operation	Ar Phys tor, Owner, Secretary)	901-60	H29m 6202 fax
Hobyn 1662 HE	Press/124 29-9509	Robyn Stated are Stand-by W 17/28 + 17/29 are used For LE	Jells for 17/06

2008 Drinking Water Quality Report North Mississippi Utility Company

Brights (0170002) Eudora (0170006) Chickasaw Bluffs (0170028) Lake of the Hills (0170029)

Is my water safe?

Last year, as in years past, your tap water met all U.S. Environmental Protection Agency (EPA) and state drinking water health standards. Local Water vigilantly safeguards its water supplies and once again we are proud to report that our system has not violated a maximum contaminant level or any other water quality standard.

Do I need to take special precautions?

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Water Drinking Hotline (800-426-4791).

Where does my water come from?

Our water comes from three wells from the Sparta Sand Aquifer for Brights, two wells from Sparta Sand Aquifer and one well from Lower Wilcox Aquifer for Eudora, two wells from Sparta Sand Aquifer for Chickasaw Bluffs and two wells from the Sparta Sand Aquifer for Lake of the Hills.

Source water assessment and its availability

Currently, our source water assessment is being prepared by the Mississippi State Department of Health. When it is completed you will be notified and copies of this assessment will be made available upon request.

Why are there contaminants in my drinking water?

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's (EPA) Safe Drinking Water Hotline (800-426-4791). The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity: microbial contaminants, such as viruses and bacteria, that may

come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife; inorganic contaminants, such as salts and metals, which can be naturally occurring or result from urban stormwater runoff, industrial, or domestic wastewater discharges, oil and gas production, mining, or farming; pesticides and herbicides, which may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses; organic Chemical Contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, and septic systems; and radioactive contaminants, which can be naturally occurring or be the result of oil and gas production and mining activities. In order to ensure that tap water is safe to drink, EPA prescribes regulations that limit the amount of certain contaminants in water provided by public water systems. Food and Drug Administration (FDA) regulations establish limits for contaminants in bottled water which must provide the same protection for public health.

How can I get involved?

We want our valued customers to be informed about their water utility. If you would like a copy of the Consumer Confidence Report for your area, please come by our office at 1481 Byhalia Rd. Our office hours are 8 AM to Noon and 1 Pm to 4:30 PM Monday through Friday.

Monitoring and reporting of compliance data violations

We are required to monitor your drinking water for specific constituents on a monthly basis. Results of regular monitoring are an indicator of whether or not our drinking water meets health standards. Beginning January 1, 2004, the Mississippi State Department of Health (MSDH) required public water systems that use chlorine as a primary disinfectant to monitor/test for chlorine residuals as required by the Stage 1 Disinfection By-Products Rule. Our system (0170006) failed to complete these monitoring requirements in April 2005. We did complete the monitoring requirements for bacteriological sampling that showed no coliform present. In an effort to ensure systems complete all monitoring requirements, MSDH now notifies systems of missing samples prior to the end of the compliance period.

Other Information

In accordance with the Radionuclides Rule, all community public water supplies were required to sample quarterly for radionuclides beginning January 2007 - December 2007. Your public water supply completed sampling by the scheduled deadline; however, during an audit of the Mississippi State Department of Health Radiological Health Laboratory, the Environmental Protection Agency (EPA) suspended analyses and reporting of radiological compliance samples and results until further notice.

Although this was not the result of inaction by the public water supply, MSDH was required to issue a violation. The Bureau of Public Water Supply is taking action to resolve this issue as quickly as possible. If you have any questions, please contact Melissa Parker, Deputy Director, Bureau of Public Water Supply, at 601-576-7518.

Additional Information for Lead

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. North Mississippi Utility Company is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water

has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead.

Water Quality Data Table – Brights (0170002)

	MCLG or	MCL,	Your	Ra	nao	Sample		
<u>Contaminants</u>	MRDLG				nge <u>High</u>		<u>Violation</u>	Eypical Source
Disinfectants & Dis				fectant i	s necess	Sarv for acc		
Chlorine (as C12) (ppm)	4	4	1.53	1.12	1.93	2008	No	Water additive used to control microbes

Inorganic Contaminants	24 1						
Antimony (ppb)	6	6	0.0005	NA	2008	No	Discharge from petroleum refineries; fire retardants; ceramics; electronics; solder; test addition.
Arsenic (ppb)	0	10	0.0005	NA	2008	No	Erosion of natural deposits; Runoff from orchards; Runoff from glass and electronics production wastes
Barium (ppm)	2	2	0.018864	NA	2008	No	Discharge of drilling wastes; Discharge from metal refineries; Erosion of natural deposits
Beryllium (ppb)	4	4	0.0001	NA	2008	No	Discharge from metal refineries and coal-burning factories; Discharge from electrical, aerospace, and defense industries

Cadmium (ppb)	5	5	0.0001	NA	2008	No	Corrosion of galvanized pipes; Erosion of natural deposits; Discharge from metal refineries; runoff from waste batteries and paints
Chromium (ppb)	100	100	0.0005	NA	2008	No	Discharge from steel and pulp mills; Erosion of natural deposits
Cyanide [as Free C (ppb)	n] 200	200	0.005	NA	2008	No	Discharge from plastic and fertilizer factories; Discharge from steel/metal factories
Fluoride (ppm)	4	4	1.5	NA	2008	No	Erosion of natural deposits; Water additive which promotes strong teeth; Discharge from fertilizer and aluminum factories
Mercury [Inorganic (ppb)] 2	2	0.0002	NA	2008	No	Erosion of natural deposits; Discharge from refineries and factories; Runoff from landfills; Runoff from cropland
Nitrate [measured a Nitrogen] (ppm)	s 10	10	0.41	NA	2008	No	Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits
Nitrite [measured as Nitrogen] (ppm)	s 1	1	0.02	NA	2008	No	Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits
Selenium (ppb)	50	50	0.0005	NA	2008	No	Discharge from petroleum and metal refineries; Erosion of natural deposits; Discharge from mines
Thallium (ppb)	0.5	2	0.0005	NA	2008	No	Discharge from electronics, glass, and Leaching from ore-processing sites; drug factories
			Your	Sample	#Samples	Exceed	ds
<u>Contaminants</u>	MCLG	<u>AL</u>	<u>Water</u>	<u>Date</u>	Exceeding AL	<u>ĀL</u>	Typical Source
Inorganic Contami	nants						
Copper - action level	at 1,3	1.3	1.3	2007	0	NT-	C

Copper - action level at

consumer taps (ppm)

Lead - action level at

consumer taps (ppb)

1.3

0

1.3

15

1.3

0.002

2007

2007

0

0

No

No

Corrosion of household plumbing

Corrosion of household plumbing

systems; Erosion of natural

systems; Erosion of natural

deposits

deposits

Water Quality Data Table - Eudora (0170006)

	MCLG or	MCL, TT, or	Your	Ra	nge	Sample		
<u>Contaminants</u>	MRDLG	MRDL	<u>Water</u>	<u>Low</u>	<u>High</u>	<u>Date</u>	<u>Violation</u>	Typical Source
Disinfectants & Dis	sinfection By-	-Product	S					
(There is convincing	g evidence tha	t addition	of a disinfe	ectant is	necessa	iry for con	itrol of micr	obial contaminants.)
Chlorine (as Cl2) (ppm)	4	4	1.33	1.25	1.35	2008	No	Water additive used to control microbes
Haloacetic Acids (HAA5) (ppb)	NA	60	. 6	NA		2008	No	By-product of drinking water chlorination
TTHMs [Total Trihalomethanes] (ppb)	NA .	80	1.67	NA		2008	·No	By-product of drinking water disinfection
Inorganic Contami	nants							
Antimony (ppb)	6	6	0.0005	NA	na Salaki in Salaki	2008	No	Discharge from petroleum refineries; fire retardants; ceramics; electronics; solder; test addition.
Arsenic (ppb)	0	10	0.000246	NA		2008	No	Erosion of natural deposits; Runoff from orchards; Runoff from glass and electronics production wastes
Barium (ppm)	2	2	0.0072	NA		2008	No	Discharge of drilling wastes; Discharge from metal refineries; Erosion of natural deposits
Beryllium (ppb)	4	4	0.0001	NA		2008	No	Discharge from metal refineries and coal-burning factories; Discharge from electrical, aerospace, and defense industries
Cadmium (ppb)	5	5	0.0001	NA		2008	No	Corrosion of galvanized pipes; Erosion of natural deposits; Discharge from metal refineries; runoff from waste batteries and

							paints
Chromium (ppb)	100	100	0.0005	NA	2008	No	Discharge from steel and pulp mills; Erosion of natural deposits
Cyanide [as Free Cn] (ppb)	200	200	0.005	NA	2008	No	Discharge from plastic and fertilizer factories; Discharge from steel/metal factories
Fluoride (ppm)	4	4	1.31	NA	2008	No	Erosion of natural deposits; Water additive which promotes strong teeth; Discharge from fertilizer and aluminum factories
Mercury [Inorganic] (ppb)	2	2	0.0002	NA	2008	No	Erosion of natural deposits; Discharge from refineries and factories; Runoff from landfills; Runoff from cropland
Nitrate [measured as Nitrogen] (ppm)	10	10	0.08	NA	2008	No	Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits
Nitrite [measured as Nitrogen] (ppm)	1	1	0.02	NA	2008	No	Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits
Selenium (ppb)	50	50	0.0005	NA	2008	No	Discharge from petroleum and metal refineries; Erosion of natural deposits; Discharge from mines
Thallium (ppb)	0.5	2	0.0005	NA	2008	No	Discharge from electronics, glass, and Leaching from ore-processing sites; drug factories

			Your	Sample	;#Samples	Exceeds	
<u>Contaminants</u>	MCLG	<u>AL</u>	<u>Water</u>	<u>Date</u>	Exceeding AL	<u>AL</u>	Typical Source
Inorganic Contaminants							
Copper - action level at consumer taps (ppm)	1.3	1.3	0	2008	10	No	Corrosion of household plumbing systems; Erosion of natural deposits
Lead - action level at consumer taps (ppb)	0	15	0.001	2008	0	No	Corrosion of household plumbing systems; Erosion of natural deposits

Water Quality Data Table - Chickasaw Bluffs (0170028)

	MCLG	MCL,					
	or	TT, or	Your	Range	Sample		
<u>Contaminants</u>	<u>MRDLG</u>	MRDL	<u>Water</u>	Low High	<u>Date</u>	<u>Violation</u>	Typical Source
		as illustration					
Disinfectants & Disi	nfection By-	Products					
Disinfectants & Disi There is convincing		2. O. S.	of a disin	fectant is necess	ary for cor	utrolt of mic	robial contaminants.)
		2. O. S.	of a disin	fectant is necess	ary for cor 2008	ntrolf of mic	robial contaminants.) By-product of drinking water chlorination

			Your	Sample	# Samples	Exceeds	
<u>Contaminants</u>	<u>MCLG</u>	<u>AL</u>	Water	<u>Date</u>	Exceeding AL	<u>AL</u>	Typical Source
Inorganic Contaminants							
Copper - action level at consumer taps (ppm)	1.3	1.3	0.1	2008	10	No	Corrosion of household plumbing systems; Erosion of natural deposits
Lead - action level at consumer taps (ppb)	0	15	0.006	2008	0	No	Corrosion of household plumbing systems; Erosion of natural deposits

Water Quality Data Table – Lake of the Hills (0170029)

	MCLG or	MCL, TT, or	Your	Rang	ge Sample		
Contaminants	MRDLG	MRDL	Water	Low]	<u>High</u> <u>Date</u>	<u>Violation</u>	Typical Source
Disinfectants & Disin	fection By-	Products					
(There is convincing ev	vidence that	addition	of a disin	fectant is	necessary for con	ntrol of micr	sobial contaminants.)
Haloacetic Acids (HAA5) (ppb)	NA	60	6	NA	2008	No	By-product of drinking water chlorination
TTHMs [Total Trihalomethanes] (ppb)	NA	80	1.67	NA	2008	No	By-product of drinking water disinfection
			Your	Sample	# Samples	Exceed	S
<u>Contaminants</u>	MCLO	E AL	Water	<u>Date</u>	Exceeding A	L AL	Typical Source
Inorganic Contamina	nts						
Copper - action level at consumer taps (ppm)	1.3	1.3	0	2008	10	No	Corrosion of household plumbing systems; Erosion of natural
							deposits

Unit Descriptions					
<u>Term</u>	<u>Definition</u>				
ppm	ppm: parts per million, or milligrams per liter (mg/L)				
ppb	ppb: parts per billion, or micrograms per liter (μg/L)				
NA	NA: not applicable				
ND	ND: Not detected				

NTD	NTD NA ': '
NR	NR: Monitoring not required, but recommended.
T 117	INIX. MOJILIOTHIS HOLL CUBIECO DILL FECOMMENDED
	First Francisco And Francisco

Important Drinking Water Definitions							
<u>Term</u>	<u>Definition</u>						
MCLG	MCLG: Maximum Contaminant Level Goal: The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.						
MCL	MCL: Maximum Contaminant Level: The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.						
TT	TT: Treatment Technique: A required process intended to reduce the level of a contaminant in drinking water.						
AL	AL: Action Level: The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.						
Variances and Exemptions	Variances and Exemptions: State or EPA permission not to meet an MCL or a treatment technique under certain conditions.						
MRDLG	MRDLG: Maximum residual disinfection level goal. The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.						
MRDL	MRDL: Maximum residual disinfectant level. The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.						
MNR	MNR: Monitored Not Regulated						
MPL	MPL: State Assigned Maximum Permissible Level						

For more information please contact:

Bill J Roberson

P O Box 362

Hernando, MS 38632

662-429-9509

662-429-6202

PHESON FIRST GLAS U.S. POST Permit NO Permit NO Hermand	CUSTOMER NO. ACCOUNT NO.	1887 11/490-0 DELINQUENT DATE	I. CJ. / CJ.?) GROSS AM	SG. GC SS. RES. RESERVENT THIS PORTION WITH PAYMENT	ARTHUR W ANDERSON JR 170 TCHULAHOMA RD	HERMANING MS 38638			
TY COMPANY MS 38632 BILL DATE	G777/9/9 SERVICE TO	07/08/09 NT CONSUMPTION	AMOUNT DUE	10, 12, 12, 12, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13			AFTER DELINQUENT DATE	90 "22"	IMM RI) Back of Bill
NORTH MISSISSIPPI UTILITY COMPANY P.O. BOX 279 • HERNANDO, MS 38632 ACCOUNT NO. CUSTOMER NO. BILL DATE	4.0.10 1.0.0.7 SERVICE FROM	06/08/09 07.	SPZをOD S4のPZ/B SERVICE DESCRIPTION	a d	· • • • • • • • • • • • • • • • • • • •	ALLEY CONTRACTOR OF THE PROPERTY OF THE PROPER	DELINQUENT DATE	, 86/18/89	FOR SERVICE AT: 1.7() T.C.H.U.L.OH-H.UMG R.U. IMPORTANT INFORMATION ON BACK OF BILL.
NORTH MIS P.O. BC ACCOUNT NO.	1.1./ 4.0.10(0) DAYS 1.1./ SERVICE FRO	PREV	SESTE SERVICE DI	THE FULL	A THE WALLEY	No.	IF PAID ON TIME	90"05	FOR SERVICE AT: 1

CORRECTED COPY OF CCR AVAILABLE IN OFFICE